A System to Detect Forged-Origin Hijacks

Thomas Holterbach University of Strasbourg

Routing Security Summit 2023

Joint work with: Thomas Alfroy Alberto Dainotti Amreesh D. Phokeer **Cristel Pelsser**

Fortunately, there are defences against BGP hijacking

Protocol extensions

RPKI + ROV BGPSec, ASPA

Configuration guidelines

Route filters

Monitoring platforms

ARTEMIS BGPAlerter

Despite the efforts, BGP is *still* vulnerable to forged-origin hijacks

Existing defenses poorly neutralise forged-origin hijacks

Protocol extensions

RPKI + ROV BGPSec, ASPA

Configuration guidelines

Route filters

Monitoring platforms

RPKI+ROV can't detect forged-origin hijacks ASPA will take years to be deployed

Forged-origin hijacks are actively used by attackers

February 3, 2022

KlaySwap crypto users lose funds after BGP hijack

Hackers have stolen roughly \$1.9 million from South Korean cryptocurrency platform KLAYswap after they pulled off a rare and clever BGP hijack against the server infrastructure of one of the platform's providers.

The BGP hijack—which is the equivalent of hackers hijacking internet routes to bring users on malicious sites instead of legitimate ones—hit KakaoTalk, an instant messaging platform popular in South Korea.

The attack took place earlier this month, on February 3, lasted only for two hours, and KLAYswap has confirmed the incident last week and is currently issuing compensation for affected users.

Both attacks are the result of a forged-origin hijack

August 17, 2022

DFOH: A System to Detect Forged-Origin Hijacks on the Whole Internet

Thomas Holterbach University of Strasbourg

Routing Security Summit 2023

Joint work with: Alberto Dainotti Thomas Alfroy Amreesh D. Phokeer **Cristel Pelsser**

Outline

1. *DFOH*'s main challenge is to detect fake AS links

2. **DFOH's key ingredients are** carefully selected features and a balanced sampling

3. **DFOH** is accurate and practical for users

Outline

1. *DFOH*'s main challenge is to detect fake AS links

2. *DFOH*'s key ingredients are carefully selected features and a balanced sampling

3. *DFOH* is accurate and practical for users

DFOH aims to detect the fake AS links induced by forged-origin hijacks

DFOH aims to detect the fake AS links induced by forged-origin hijacks

BGP vantage point

DFOH aims to detect the fake AS links induced by forged-origin hijacks

BGP vantage point

An attacker cannot escape from creating a new AS link without hampering the effectiveness of its attack

<u>Problem</u>: There are many new AS links every day but no simple property that tells whether they are real or fake

We find 166 new AS links every day (median)

Using the BGP data from 200 RIS and RouteViews peers and collected during ten months in 2022

<u>Problem:</u> There are many new AS links every day but no simple property that tells whether they are real or fake

1. **DFOH**'s main challenge is to detect fake AS links

2. **DFOH's key ingredients are** carefully selected features and a balanced sampling

3. **DFOH** is accurate and practical for users

Feature vectors

DFOH uses a total of **11** topological features that can be divided into four categories

Node centrality Neighborhood richness

Topological patterns

Closeness

Feature vectors

DFOH leverages correlations in the public peering information

DFOH looks for three types of information in PeeringDB:

1. Country

2. Public peering exchange points

3. Private peering facilities

3

EQUINIX

Feature vectors

DFOH detects fake AS paths as they often violate patterns induced by business relationships

DFOH detects fake AS paths as they often violate patterns induced by business relationships

DFOH detects fake AS paths as they often violate patterns induced by business relationships

towards stub-to-stub links as they are overrepresented

Problem: randomly sampling nonexistent links makes DFOH skewed

Clusters of ASes based on their degree and cone size

Stub

Transj.

- Transit/IXP/CDN 1
- Transit/IXP/CDN 2 -
- Transit/IXP/CDN 3 -
- Transit/IXP/CDN 4 -
- Highly connected
- Large customer cone -
 - Tier1

Proportion of sampled **nonexistent** AS links (random sampling)

DFOH would perform < well on scenarios involving two stubs

Transit/IXP/CDN 1 - 0.02

Stub

Transit/IXP/CDN 2 - 0.00

Transit/IXP/CDN 3 - 0.00

Transit/IXP/CDN 4

Highly connected - 0.00

Tier1

Proportion of sampled **nonexistent** AS links (random sampling)

0.02	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00

Proportion of sampled **nonexistent** AS links (random sampling)

Outline

1. *DFOH*'s main challenge is to detect fake AS links

2. *DFOH*'s key ingredients are carefully selected features and a balanced sampling

3. *DFOH* is accurate and practical for users

We evaluate **DFOH** on artificially created forged-origin hijacks and measure its accuracy upon every attack scenario

Methodology:

Step #1: We take existing AS paths and prepend a new origin to create a new link

Step #2: We consider 9k cases where the new link exists (*legitimate cases*) and 9k cases where the new link does not existent (*malicious cases*)

We evaluate **DFOH** on artificially created forged-origin hijacks and measure its accuracy upon every attack scenario

Methodology:

Step #1: We take existing AS paths and prepend a new origin to create a new link

<u>Step #2:</u> We consider 9k cases where the new link exists (legitimate cases) and 9k cases where the new link does not existent (*malicious cases*)

We focus on the True Positive Rate (TPR) and the False Positive Rate (FPR)

Victim

Stub -	0.97	0.86	0.91	0.96	0.94	0.95	С
Transit/IXP/CDN 1	0.86	0.73	0.90	0.97	0.82	0.96	С
Transit/IXP/CDN 2	0.91	0.90	0.85	0.95	0.99	0.99	C
Transit/IXP/CDN 3	0.96	0.97	0.95	0.99	1.00	0.98	С
Transit/IXP/CDN 4	0.94	0.82	0.99	1.00	0.90	1.00	С
Highly connected	0.95	0.96	0.99	0.98	1.00	1.00	1
Large customer cone	0.95	0.83	0.90	0.99	0.85	1.00	C
Tier1	0.84	0.73	0.83	0.91	0.83	0.96	С

TPR

Attacker

Victim

0.97 0.86 0.91 0.96 0.94 0.95 0.95 0.84 Stub Transit/IXP/CDN 1 - 0.86 0.73 0.90 0.97 0.82 0.96 0.83 0.73 0.91 0.90 0.85 0.95 0.99 0.99 Transit/IXP/CDN 2 0.96 0.97 0.95 0.99 1.00 0.98 0.99 0.91 Transit/IXP/CDN 3 0.94 0.82 0.99 1.00 0.90 1.00 0.85 0.83 Transit/IXP/CDN 4 0.95 0.96 0.99 0.98 1.00 1.00 1.00 0.96 Highly connected 0.95 0.83 0.90 0.99 0.85 1.00 0.97 0.89 Large customer cone 0.84 0.73 0.83 0.91 0.83 0.96 0.89 0.78 Tier1

TPR

Attacker

The minimum TPR is 0.73

FPR

Attacker

Stub	- 0.04	0.03	0.02	0.01	0.00	0.01	(
Transit/IXP/CDN 1	- 0.03	0.03	0.01	0.01	0.02	0.00	C
Transit/IXP/CDN 2	- 0.02	0.01	0.02	0.01	0.03	0.01	(
Transit/IXP/CDN 3	- 0.01	0.01	0.01	0.00	0.05	0.01	(
Transit/IXP/CDN 4	- 0.00	0.02	0.03	0.05	0.04	0.01	(
Highly connected	- 0.01	0.00	0.01	0.01	0.01	0.00	(
arge customer cone	- 0.02	0.02	0.03	0.03	0.00	0.00	(
Tier1	- 0.03	0.06	0.07	0.00	0.06	0.15	(

Transit/IXP/CDN 1 - 0.03 0.03 0.01 0.01 0.02 0.00 0.02 0.06 Transit/IXP/CDN 2 - 0.02 0.01 0.02 0.01 0.03 0.01 0.03 0.07 Transit/IXP/CDN 3 - 0.01 0.01 0.01 0.00 0.05 0.01 0.03 0.00 Transit/IXP/CDN 4 - 0.00 0.02 0.03 0.05 0.04 0.01 0.00 0.06

FPR

ttacke

DFOH makes the detection of forged-origin hijacks practical for operators

DFOH makes the detection of forged-origin hijacks practical for operators

DFOH makes the detection of forged-origin hijacks practical for operators

DFOH: A System to Detect Forged-Origin Hijacks

DFOH runs in a commodity server

DFOH detects hijacks on the whole Internet

CDN Tier1 Stub

DFOH is accurate in every attack scenario

DFOH: A System to Detect Forged-Origin Hijacks

DFOH runs in a commodity server

DFOH detects hijacks on the whole Internet

CDN Tier1 Stub

DFOH is accurate in every attack scenario

DFOH detects past hijacks

DFOH provides near-real-time detection

DFOH is robust against adversarial inputs

DFOH: A System to Detect Forged-Origin Hijacks dfoh.info.ucl.ac.be

DFOH runs in a commodity server

DFOH detects hijacks on the whole Internet

CDN Tier1 Stub

DFOH is accurate in every attack scenario

DFOH detects past hijacks

DFOH provides near-real-time detection

DFOH is robust against adversarial inputs

An attacker cannot escape from creating a new AS link without hampering the effectiveness of its attack

An attacker cannot escape from creating a new AS link without hampering the effectiveness of its attack

prepended by the attacker

An attacker cannot escape from creating a new AS link without hampering the effectiveness of its attack

% of polluted ASes

prepended by the attacker

6

Pattern #1: Hierarchical structure with a few Tier1s and many stubs

~70k stub ASes

Pattern #1: Hierarchical structure with a few Tier1s and many stubs

Pattern #2: CDNs and HyperGiants are highly connected

Pattern #1: Hierarchical structure with a few Tier1s and many stubs

Pattern #2: CDNs and HyperGiants are highly connected

Pattern #3: Remote peerings and IP tunnels flatten the graph

<u>Step #1:</u> Finding new links

DFOH takes all updates and one RIB per month from 200 BGP vantage points selected using MVP*

DFOH builds the AS topology at day d using AS paths in BGP routes collected during the 300 days prior d

DFOH infers that an AS link observed at day d is new if the link is not in the AS topology constructed at day d

*mvp.info.ucl.ac.be

DFOH computes the change induced by the new AS link on topological features

3

Example with the shortest distance feature

Before the new link: shortest distance between 6 and 9 is 5

After the new link: shortest distance between 6 and 9 is 1

Difference is 4

6

New AS link

DFOH verifies that a new AS link is observed in both directions as it is a strong indicator of legitimacy

- **DFOH** verifies link bidirectionality using:
- BGP data (AS path) from many VPs
- IRR data (import/export policies)

DFOH verifies that a new AS link is observed in both directions as it is a strong indicator of legitimacy

- **DFOH** verifies link bidirectionality using:
- BGP data (AS path) from many VPs
- IRR data (import/export policies)

DFOH verifies that a new AS link is observed in both directions as it is a strong indicator of legitimacy

- **DFOH** verifies link bidirectionality using:
- BGP data (AS path) from many VPs
- IRR data (import/export policies)

AS links observed in both directions are legitimate

3

The bidirectionality feature is safe as an attacker cannot intentionally fake both directions of an AS link

Faking both directions in the same AS path would create a loop

Faking both directions in the IRR is not possible as the attacker only controls its IRR data

Merging these two datasets is safe as an attacker can only fake the same direction in BGP and the IRR

DFOH considers the neighbouring nodes to avoid adversarial inputs as the information on Peeringdb is not verified

New AS link

DFOH learns the pattern of legitimate and malicious AS paths using a supervised training model

DFOH samples X legitimate AS paths and artificially creates the same number of maliciously-induced AS paths

DFOH computes the degree and customer cone size of every AS in the sampled AS paths

DFOH trains a random forest that it uses to compute a probability that a given AS path is fake or real

DFOH builds a sample of nonexistent links that is similarly balanced as the set of existing links

Existing links distribution between different AS categories

AS category: \rightarrow

	1	I	1	1	1	- 1	1	1	Г	0.12
_	0.13	0.16	0.11	0.14	0.02	0.10	0.04	0.09		
_	0.16	0.05	0.06	0.04	0.01	0.02	0.01	0.01	-	0.10
_	0.11	0.06	0.01	0.01	0.00	0.00	0.00	0.00	-	0.08
_	0.14	0.04	0.01	0.00	0.00	0.00	0.00	0.00		0.06
_	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00
_	0.10	0.02	0.00	0.00	0.00	0.00	0.00	0.00	F	0.04
_	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	ŀ	0.02
_	0.09	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00
										0.00

Sampled nonexistent links distribution when using **DFOH**'s balanced sampling

DFOH uses a random forest classifier to classify an AS link as fake or legitimate

1. DFOH samples 30k existing and nonexistent AS links

2. DFOH estimates the best parameters using a cross-validated grid search on 25% of the sampled AS links

3. *DFOH* trains the classifier with the remaining 75% of the AS links

DFOH repeats this process every day to ensure that its inferences remain accurate over time